1660, 1630, 1605 cm⁻¹; NMR (CDCl₃) δ 5.57 (s, 2 H, C₂- and C₆-H), 3.78 (s, 6 H, C₃- and C₅-OCH₃), 3.40 (q, 2 H, J = 7 Hz, OCH₂CH₃), 3.24 (s, 3 H, C₄-OCH₃), 1.21 (t, 3 H, J = 7 Hz, OCH₂CH₃). Anal. Calcd for C₁₁H₁₆O₅: C, 57.88; H, 7.07. Found: C, 57.54; H, 7.20.

4-Isopropoxy-3,4,5-trimethoxycyclohexa-2,5-dienone (16c). This (117 mg) was obtained from 6 (0.5 mmol), PIFA (0.5 mmol), and K₂CO₃ (1 mmol) in isopropyl alcohol-acetonitrile as colorless crystals. Recrystallization from ethyl acetate-hexane gave pure 16c: mp 125.5-127 °C (lit.^{8a} no physical and spectral data); IR (CHCl₃) 1660, 1630, 1600 cm⁻¹; NMR (CDCl₃) δ 5.58 (s, 2 H, C₂- and C₆-H), 4.1-3.7 (m, 1 H, CH<), 3.77 (s, 6 H, C₃- and C₅-OCH₃), 3.20 (s, 3 H, C₄-OCH₃), 1.12 (d, 6 H, J = 6 Hz, CHMe₂); exact mass calcd for C₁₂H₁₈O₅ 242.1153, found 242.1153.

4-Ethoxy-4-methoxycyclohexa-2,5-dienone (17). This (151 mg) was obtained from 7 (138 mg, 1 mmol), PIFA (1 mmol), and K_2CO_3 (2 mmol) in methanol-acetonitrile as a colorless syrup: IR (CHCl₃) 1690, 1675, 1640 cm⁻¹; NMR (CDCl₃) δ 6.79 (d, 2 H, J = 10 Hz, C₃- and C₅-H), 6.22 (d, 2 H, J = 10 Hz, C₂- and C₆-H), 3.62 (q, 2 H, J = 7 Hz, OCH₂CH₃), 3.34 (s, 3 H, C₄-OCH₃), 1.22 (t, 3 H, J = 7 Hz, OCH₂CH₃); exact mass calcd for C₉H₁₂O₃ 168.0787, found 168.0798.

1-Oxaspiro[4,5]deca-6,9-diene-2,8-dione (18). (i) This (142 mg) was obtained from 8a (166 mg, 1 mmol) and PIFA (1 mmol) in acetonitrile as colorless crystals. Recrystallization from benzene-hexane gave pure 18: mp 106.5–108 °C (lit.²⁰ mp 100–102 °C, lit.²¹ mp 106 °C); IR (CHCl₃) 1785, 1675, 1635 cm⁻¹; NMR (CDCl₃) δ 6.84 (d, 2 H, J = 10 Hz, C₆- and C₁₀-H), 6.24 (d, 2 H, J = 10 Hz, C₇- and C₉-H), 2.9–2.2 (m, 4 H, CH₂ × 2). (ii) This (53 mg) was obtained from 8b (121 mg, 0.47 mmol), PIFA (0.47 mmol), and pyridine (0.16 mL) in acetonitrile.

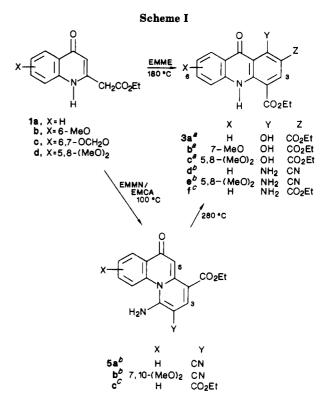
1,4-Dioxaspiro[4,5]deca-6,9-diene-2,8-dione (19). This (134 mg) was obtained from 9 (168 mg, 1 mmol) and PIFA (1 mmol) in acetonitrile as pale yellow crystals; mp 57–60 °C. Recrystallization from benzene-pentane gave pure 19 as colorless needles: mp 66–67 °C (lit.²² mp 62–64 °C); IR (CHCl₃) 1820, 1680, 1640 cm⁻¹; NMR (CDCl₃) δ 6.71 (d, 2 H, J = 10 Hz, C₆- and C₁₀-H), 6.28 (d, 2 H, J = 10 Hz, C₇- and C₉-H), 4.46 (s, 2 H, CH₂).

1-Oxaspiro[4,5]deca-6,9-dien-8-one (20). This (89 mg) was obtained from 10 (152 mg, 1 mmol), PIFA (1 mmol), and pyridine (0.3 mL) in acetonitrile as a syrup.²³ IR (CHCl₃) 1690, 1670, 1630 cm⁻¹; NMR (CDCl₃) δ 6.76 (d, 2 H, J = 10 Hz, C₆- and C₁₀-H), 6.08 (d, 2 H, J = 10 Hz, C₇- and C₉-H), 4.06 (t, 2 H, J = 6 Hz, CH₂), 2.4-2.0 (m, 4 H, CH₂ × 2); exact mass calcd for C₉H₁₀O₂ 150.0678, found 150.0677.

Registry No. 1, 533-31-3; 2, 2033-89-8; 3, 66967-26-8; 4, 72312-07-3; 5, 20491-91-2; 6, 642-71-7; 7, 622-62-8; 8a, 501-97-3; 8b, 74454-78-7; 9, 1878-84-8; 10, 10210-17-0; 11a, 57197-23-6; 11b, 57197-24-7; 11c, 109183-15-5; 12, 64701-03-7; 13, 66967-27-9; 14, 72312-08-4; 15, 67271-97-0; 16a, 57197-13-4; 16b, 57197-20-3; 16c, 57197-21-4; 17, 73010-52-3; 18, 4572-26-3; 19, 4385-47-1; 20, 67856-28-4; PhI(OCOCF₃)₂, 2712-78-9.

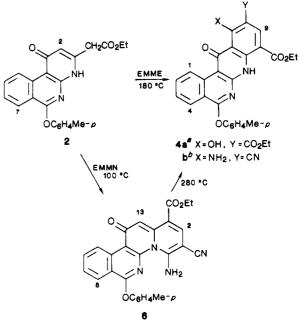
(20) Schweizer, J.; Lattrell, R.; Hecker, E. Experientia 1975, 31, 1267.
(21) Scott, A. I.; Dodson, P. A.; McCapra, F.; Meyers, M. B. J. Am. Chem. Soc. 1963, 85, 3702.

(22) Hunter, N. R.; Wang, P. M.-C. Synth. Commun. 1982, 12, 427.
(23) Goosen, A.; McCleland, C. W. J. Chem. Soc., Perkin Trans 1 1978, 646.


New Syntheses of Acridin-9-ones, Benzo[c]quinolizin-6-ones, Pyrrolo[1,2-a]quinoline-1,5-diones, and Some Related Tetracyclic Compounds

Leslie W. Deady* and Dianne M. Werden

Chemistry Department, La Trobe University, Bundoora, Victoria 3083, Australia


Received February 2, 1987

In work on possible DNA interacalating heterocycles, we were interested in the products resulting from annulation of the acetic esters 1 (Scheme I) and 2 (Scheme II).

^a From EMME. ^b From EMMN. ^c From EMCA.

Scheme II

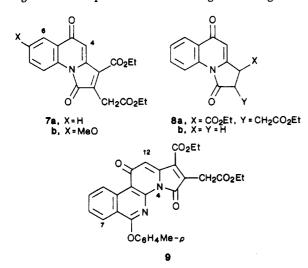
^a From EMME. ^b From EMMN.

Compounds 1 were prepared from the anilines and diethyl 3-oxoglutarate, by an improvement on a published Conrad-Limpach synthesis.¹ The tricyclic ester 2 was obtained from 1-(p-methylphenoxy) isoquinolin-3-amine.²

Condensation reactions were then carried out with diethyl(ethoxymethylene)malonate (EMME), (ethoxymethyl)malononitrile (EMMN), ethyl (ethoxymethylene)cyanoacetate (EMCA), and diethyl acetylenedicarboxylate (DEAD).

⁽¹⁾ Kaslow, C. E.; Nix, S. J. J. Org. Chem. 1951, 16, 895.

⁽²⁾ Deady, L. W.; Werden, D. M. Aust. J. Chem. 1986, 39, 667.


Reaction of compounds 1 with EMME at 180 °C gave the acridinones 3a-c in 70-80% yield, with none of the isomers which would result from cyclization on N. Structures 3 were indicated by the absence of a signal in the ¹H NMR spectra corresponding to that for H-3 in 1. At lower reaction temperatures, mixtures of 3 and unreacted 1 were obtained, and there was no indication of an intermediate. Cyclization of 2 gave the analogous tetracycle 4a.

The nitrile EMMN reacted more rapidly with 1a,d, and at 100 °C, the benzoquinolizinones 5 were produced in >90% yield. This structure was assigned from the characteristic singlets for H-3 and H-5 and downfield shift of the doublet for H-10 in 5a relative to that for H-5 in 3d, in the ¹H NMR spectrum. In paraffin oil at 280 °C, the N-cyclized products isomerized to the acridinones 3d,e. Compound 2 reacted likewise to give 6 and 4b.

The reaction of 1a with EMCA followed the EMMN pathway with cyclication through the nitrile group throughout the range 100–180 °C (i.e., even where EMME reacted) and 5c was formed, which was isomerized to 3f at 280 °C.

In the literature reports of reactions of these malonic acid derivatives with some related heterocycle acetic acid esters,³ cyclization was invariably onto the ring N. Our finding of cyclization onto C-3 of 1 was therefore of particular interest in leading to a simple, new synthesis of highly substituted acridin-9-ones.

Compounds 1a,b reacted readily with DEAD at 100 °C to give the pyrrolo[1,2-*a*]quinolinediones 7a,b in >50% yield. Ring closure onto the N was evident from the signal for H-4 in the ¹H NMR spectrum. Carbonyl group ¹³C NMR data of a reduced product provided evidence for a five-membered ring. Thus, hydrogenation of 7a readily removed the 2,3-double bond to give 8a [δ 178.8 (C-5), 174.5 (C-1), 170.4, 168.3 (esters)]. This is a derivative of 8b [δ 178.8 (C-5), 175.3 (C-1)], which was available from other work.⁴ The lactam carbonyl shifts are almost the same and typical of γ -lactams, whereas a six-membered ring would be expected to have this signal at a higher field.⁵

The products obtained from reactions of acetylenic esters with pyridin-2-yl⁶ and quinolin-2-yl⁷ acetic esters are quite different to those above, and our results therefore illustrate a novel synthesis of the pyrrolo[1,2-a]quinoline system. In the same way, 2 gave the aromatic 7,14-diaza steroid system 9.

Both maleate- and fumarate-type intermediates are known in Michael addition reactions with acetylenic esters.⁸ The formation of an initial maleate adduct could explain the present result. The geometry of this is such that the end ester group cannot attain the required closeness to C-3 or N for six-membered ring formation. The other ester group from DEAD is accessible for ring closure onto the N, however. We found that ethyl propiolate failed to react with 1a, a result in accord with this explanation.

Experimental Section

General. ¹H NMR spectra were recorded on a Perkin-Elmer R32 90-MHz spectrometer. In addition to the data listed below, all spectra contained ethyl group signals centered at δ 1.1 (t, J = 7 Hz, CH₃) and 4.2 (q, J = 7 Hz, CH₂), in the correct integral ratios for the suggested structures. ¹³C NMR spectra were recorded on a JEOL PFT-100FT (25 MHz) spectrometer.

Preparation of Compounds 1 and 2. Equimolar quantities of the appropriate amine and diethyl 3-oxoglutarate, in $CHCl_3$ containing a drop of concentrated HCl, were heated under Dean-Stark conditions for 24 h. The solvent was removed and the residue dissolved in hot light petroleum (bp 90–110 °C). The solution was stirred in an ice-salt bath, and the intermediate which crystallized (>80% yield) was collected.

This was mixed with 5 times its weight of PPA and heated at 110-120 °C for 2 h. Ice-water was added to the cooled mixture, the pH was taken to 5-6 with 10% NaOH (pH 4 for 1c), and the product (>70% yield) was filtered (CHCl₃ extraction necessary for 1d) and washed with water. In this way the following were prepared.

1a: mp 202-203 °C (from EtOH) (lit.¹ mp 202-204 °C); ¹H NMR (CDCl₃) δ 3.75 (s, 2 H, CH₂), 6.2 (s, 1 H, H-3), 7.2-7.6 (m, 3 H, H-6,7,8), 8.2 (d, J = 8 Hz, 1 H, H-5).

1b: mp 181–183 °C (from EtOH) (lit.¹ mp 181–184 °C); ¹H NMR [CDCl₃/(CD₃)₂SO] δ 3.7 (s, 2 H, CH₂), 3.9 (s, 3 H, MeO), 6.1 (s, 1 H, H-3), 7.2 (dd, J = 9, 3 Hz, 1 H, H-7), 7.45 (d, J = 9Hz, 1 H, H-8), 7.55 (d, J = 3 Hz, 1 H, H-5).

ic: mp 251–253 °C (from MeOH); ¹H NMR [(CD₃)₂SO] δ 3.55 (s, 2 H, CH₂), 5.85 (s, 1 H, H-3), 5.9 (s, 2 H, OCH₂O), 6.8 (s, 1 H, H-8), 7.3 (s, 1 H, H-5).

1d: mp 63-65 °C (from toluene); ¹H NMR (CDCl₃) δ 3.7 (s, 2 H, CH₂), 3.9 (s, 6 H, MeO), 6.2 (s, 1 H, H-3), 6.5, 6.85 (d + d, J = 9 Hz, 2 H, H-6,7), 8.65 (br s, 1 H, NH).

2: mp 157-159 °C (from toluene); ¹H NMR (CDCl₃) δ 2.4 (s, 3 H, Me), 3.6 (s, 2 H, CH₂), 6.3 (s, 1 H, H-2), 7.2 (s, 4 H, OAr), 7.4-8.1 (m, 2 H, H-8,9), 8.5 (d, J = 8 Hz, 1 H, H-7), 10.1 (d, J = 8 Hz, 1 H, H-10).

General Reaction Method. A mixture of the compounds 1 or 2 and 1.1 molar equiv of EMME (180 °C), EMMN (100 °C), EMCA (100 °C), or DEAD (100 °C) was heated for 1 h. The mixture initially liquified and then solid formed. After cooling, the solid was filtered with the aid of a little acetone. The following products were thereby obtained.

A. From EMME. 3a (78%): mp 215–216 °C (from toluene); ¹H NMR (CDCl₃) δ 7.15–7.75 (m, 3 H, H-5,6,7), 8.2 (d, J = 8 Hz, 1 H, H-8), 8.8 (s, 1 H, H-3), 12.4 (br s, 1 H, OH). Anal. Calcd for C₁₉H₁₇NO₆: C, 64.2; H, 4.8; N, 3.9. Found: C, 64.3; H, 4.7; N, 3.9.

3b (68%): mp 220-221 °C (from toluene); ¹H NMR (CDCl₃) δ 3.83 (s, 3 H, MeO), 7.1-7.3 (m, 2 H, H-5,6), 7.4 (d, J = 2 Hz, 1 H, H-8), 8.7 (s, 1 H, H-3), 12.1 (s, 1 H, OH).

3c (73%): mp 202–203 °C (from toluene); ¹H NMR (CDCl₃) δ 3.92, 3.95 (s + s, 6 H, MeO), 6.5, 7.0 (d + d, J = 9 Hz, 2 H, H-6,7), 8.9 (s, 1 H, H-3), 12.3 (br s, 1 H, OH).

^{(3) (}a) Boekelheide, V.; Lodge, J. P. J. Am. Chem. Soc. 1951, 73, 3681.
(b) Adams, R.; Reifschneider, W. J. Am. Chem. Soc. 1959, 81, 2537. (c) Awaya, H.; Maseda, C.; Tominga, Y.; Natsuki, R.; Matsuda, Y.; Kobayashi, G. Chem. Pharm. Bull. 1974, 22, 1424.

 ⁽⁴⁾ Deady, L. W.; Werden, D. M. Synth. Commun. 1987, 17, 319.
 (5) Rae, I. D. Aust. J. Chem. 1979, 32, 567.

⁽⁶⁾ Acheson, R. M.; Robinson, D. A. J. Chem. Soc. C 1968, 1629.

⁽⁷⁾ Acheson, R. M.; Procter, G. J. Chem. Soc., Perkin Trans. 1 1979, 2171.

⁽⁸⁾ George, M. V.; Khetan, S. K.; Gupta, R. K. Adv. Heterocycl. Chem. 1976, 19, 279.

4a (56%): mp 309-311 °C (from toluene); ¹H NMR (CDCl₃) δ 2.45 (s, 3 H, Me), 7.2 (s, 4 H, OArH), 7.4-8.0 (m, 2 H, H-2,3), 8.4 (d, J = 8 Hz, 1 H, H-4), 8.8 (s, 1 H, H-9), 9.7 (d, J = 8 Hz, 1 H, H-1), 12.3 (br s, 1 H, OH).

B. From EMMN. 5a (94%): mp 220–221 °C (from MeOH); ¹H NMR [(CD_3)₂SO] δ 7.0 (s, 1 H, H-5), 7.2–7.6 (m, 2 H, H-8,9), 7.75 (s, 1 H, H-3), 7.8–8.2 (m, 2 H, H-7,10). Anal. Calcd for C₁₇H₁₃N₃O₃: C, 66.5; H, 4.2; N, 13.6. Found: C, 66.2; H, 4.4; N, 13.8.

5b (96%): mp 256–258 °C (from dioxane); ¹H NMR (CF₃CO₂H) δ 3.74, 3.79 (s + s, 6 H, MeO), 6.7, 7.0 (d + d, J = 8 Hz, 2 H, H-8,9), 6.9 (s, 1 H, H-5), 7.6 (br s, 2 H, NH₂), 8.2 (s, 1 H, H-3).

6 (73%): mp 225-227 °C (from a large volume of EtOH); ¹H NMR [(CD₃)₂SO/CF₃CO₂H] δ 2.4 (s, 3 H, Me), 7.1-7.4 (d + d, J = 8 Hz, 4 H, Ar H), 7.6-8.05 (m, 2 H, H-9,10), 8.1, 8.45 (s + s, 2 H, H-2,13), 8.5 (d, J = 8 Hz, 1 H, H-8), 9.4 (br s, 2 H, NH₂), 9.6 (d, J = 8 Hz, 1 H, H-11).

These compounds were isomerized by adding to stirring paraffin oil at 280–290 °C and heating for 0.5 h. Light petroleum (bp 60–90 °C) was added to the cooled mixture, and the product was filtered off, dried, and recrystallized from toluene.

3d (79% from 5a): mp 263–265 °C; ¹H NMR (CF₃CO₂H) δ 6.9–7.6 (m, 3 H, H-5,6,7), 7.75 (d, J = 8 Hz, 1 H, H-8), 8.0 (s, 1 H, H-3). Anal. Calcd for C₁₇H₁₃N₃O₃: C, 66.5; H, 4.2; N, 13.6. Found: C, 66.4; H, 4.5; N, 13.5.

3e (79% from **5b**): mp 270–272 °C; ¹H NMR (CF₃CO₂H) δ 3.8, 3.92 (s + s, 6 H, MeO), 6.8, 7.2 (d + d, J = 9 Hz, 2 H, H-6,7), 8.5 (s, 1 H, H-3).

4b (67% from 6): mp 273–275 °C; ¹H NMR (200 MHz/ CF₃CO₂H) δ 2.6 (s, 3 H, Me), 7.4, 7.6 (d + d, J = 8 Hz, 4 H, Ar H), 8.0, 8.35 (t + t, J = 8 Hz, 2 H, H-2,3), 8.5 (s, 1 H, H-9), 8.87 (d, J = 8 Hz, 1 H, H-4), 10.0 (d, J = 8 Hz, 1 H, H-1).

C. From EMCA. 5c (90%): mp 201–203 °C (from toluene); ¹H NMR [(CD_3)₂SO/CF₃CO₂H] δ 7.3–7.5 (m, 2 H), 7.4 (s, 1 H, H-5), 7.9–8.3 (m, 2 H), 8.3 (s, 1 H, H-3).

3f (64%) was then obtained by thermal isomerization as for the EMMN reactions above and had mp 200-201 °C (from toluene): ¹H NMR (CF₃CO₂H) δ 7.0-7.6 (m, 3 H, H-5,6,7), 7.75 (d, J = 8 Hz, 1 H, H-8), 8.5 (s, 1 H, H-3). A sample for analysis was further purified by eluting through a short alumina column with CHCl₃ (R_f 0.95). Anal. Calcd for C₁₉H₁₈N₂O₅: C, 64.4; H, 5.1; N, 7.9. Found: C, 64.4; H, 5.0; N, 7.9.

D. From DEAD. 7a (50%): mp 140–141 °C (from acetone); ¹H NMR (CDCl₃) δ 3.84 (s, 2 H, CH₂), 7.0 (s, 1 H, H-4), 7.3, 7.6 (t + t, J = 8 Hz, 2 H, H-7,8), 8.1 (d, J = 8 Hz, 1 H, H-6), 8.64 (d, J = 8 Hz, 1 H, H-9); ¹³C NMR (CDCl₃) δ 14.0, 30.5, 61.6, 62.3, 113.2, 117.0, 123.2, 125.5, 126.7, 134.6, 136.9, 139.4, 144.1, 160.7, 166.2, 167.9, 180.0. Anal. Calcd for C₁₉H₁₇NO₆: C, 64.2; H, 4.8; N, 3.9. Found: C, 64.3; H, 5.0; N, 4.1.

A sample of this compound, when hydrogenated in EtOH over 10% Pd/carbon, rapidly took up 1 mol of hydrogen. Removal of catalyst and solvent gave 8a as a yellow glass: ¹H NMR (CDCl₃) δ 2.9–3.1 (m, 2 H, CH₂CO₂Et), 3.5–3.8 (m, 1 H, CHCH₂CO₂Et), 4.1 (with ester CH₂, 1 H, CHCO₂Et), 6.4 (d, J = 1.5 Hz, 1 H, H-4), 7.25–7.7 (m, 2 H, H-7.8), 8.15 (dd, J = 8.2 Hz, 1 H, H-6), 8.95 (d, J = 8 Hz, 1 H, H-9); ¹³C NMR (CDCl₃) δ 14.0, 33.4, 40.0, 46.4, 61.3, 62.7, 109.0, 117.8, 124.9, 126.1, 126.5, 133.2, 136.3, 150.1, 168.3, 170.4, 174.5, 178.8.

7b (55%): mp 139–140 °C (from acetone); ¹H NMR (200 MHz/CDCl₃) δ 3.84 (s, 2 H, CH₂), 3.9 (s, 3 H, MeO), 7.0 (s, 1 H, H-4), 7.2 (dd, J = 9, 3 Hz, 1 H, H-8), 7.5 (d, J = 3 Hz, 1 H, H-6), 8.6 (d, J = 9 Hz, 1 H, H-9).

9 (59%): mp 210–212 °C (from acetone); ¹H NMR (CDCl₃) δ 2.45 (s, 3 H, Me), 3.8 (s, 2 H, CH₂), 7.1 (s, 1 H, H-12), 7.3 (d + d, J = 8 Hz, 4 H, Ar H), 7.5–8.0 (m, 2 H, H-8,9), 8.45 (d, J = 8 Hz, 1 H, H-7), 9.8 (d, J = 8 Hz, 1 H, H-10).

Registry No. 1a, 109152-04-7; 1b, 109152-05-8; 1c, 109152-06-9; 1d, 109152-07-0; 2, 109152-08-1; 3a, 109152-09-2; 3b, 109152-10-5; 3c, 109152-11-6; 3d, 109152-12-7; 3e, 109152-13-8; 3f, 109152-14-9; 4a, 109152-15-0; 4b, 109152-16-1; 5a, 109152-17-2; 5b, 109152-18-3; 5c, 109152-19-4; 6, 109152-20-7; 7a, 109152-21-8; 7b, 109152-22-9; 8a, 109152-23-0; 9, 109152-24-1; EMME, 87-13-8; EMMN, 123-06-8; EMCA, 94-05-3; DEAD, 762-21-0; aniline, 62-53-3; 1-(pmethylphenoxy)isoquinoline-3-amine, 106051-96-1; diethyl 3oxoglutarate, 105-50-0; 4-methoxyaniline, 104-94-9; 5-aminobenzodioxole, 14268-66-7; 2,5-dimethoxyaniline, 102-56-7.

Synthesis and Stereochemistry of Novel Triarylmesitylenes. Bases for Rigid Tridentate Ligands

Howard Edan Katz

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Received March 18, 1987

Syn-anti stereochemistry is rarely encountered in substituted benzenoid aromatic compounds, even though it is a fundamental consideration for saturated carbocycles. It has been previously noted¹ that relative orientation of substituents on benzene rings gives rise to only a small subset of the limited number of geometrically isomeric aromatics. In the past year, however, three papers have appeared^{1,2} in which the relative conformations of substituents on hexasubstituted benzenes have been at issue. In all of those cases, the six substituents about the central benzene ring have been identical. Also, it was not apparent that any of the compounds were intended for further derivitization.

Recent advances in the construction of strong binders for cations,³ anions⁴, and transition metals⁵ have been aided by the availability of rigid, bidentate subunits, including orthodisubstituted benzenes, *peri*-naphthalenes, and 1,8-disubstituted biphenylenes. On the other hand, there are no higher order (tridentate, etc.) binding units that are rigidly oriented, convergent, and amenable to functional group transformation, although the interesting special case of *all-cis*-1,3,5-trimethylcyclohexane-1,3,5tricarboxylic acid has been cleverly exploited⁶ in the synthesis of more elaborate binders.

If substituents at the 1, 3, and 5 positions of a benzene ring could be held at $60-90^{\circ}$ angles and all-syn with respect to the plane of the benzene ring, the result would be a useful well-oriented tridentate binding unit. In the hope that 2-, 4-, and 6-methyl groups would enforce the necessary stereochemistry, we investigated compounds of general structure A. Before incorporating the actual ligating groups, two preliminary questions needed to be addressed: the synthesis of the structural unit and the ability of the methyl groups to hold the other substituents in place. These two issues are the subject of the present investigation.

Experimental Section

Solvents and reagents were commercially available except as noted and were used without further purification. Boronic acids were prepared when necessary from the corresponding lithium reagents and trialkylborates by using standard methodology. Tribromomesitylene was prepared⁷ from mesitylene and Br₂/Fe. Separations were performed on a Beckman HPLC apparatus with variable wavelength UV detection; the preparative column was 1.5×50 cm packed with silica gel, and the analytical column was 1×25 cm C₁₈-silicate. Proton and carbon NMR spectra (vs. Me₄Si) were obtained on a Bruker 360-MHz spectrometer; ¹³C spectra were fully decoupled. Analytical data were obtained by

⁽¹⁾ Pepermans, H.; Willem, R.; Gielen, M.; Hoogzand, C. J. Org. Chem. 1986, 51, 301-306.

^{(2) (}a) Schuster, I. I.; Weissensteiner, W.; Mislow, K. J. Am. Chem. Soc. 1986, 108, 6661-6663. (b) Siegel, J.; Gutierrez, A.; Schweizer, W. B.; Ermer, O.; Mislow, K. J. Am. Chem. Soc. 1986, 108, 1569-1575.

Soc. 1936, 1030, 5001 Color. (J) Steget, 5., Outerley, A., Scheller, W. D.,
 Ermer, O.; Mislow, K. J. Am. Chem. Soc. 1986, 108, 1569-1575.
 (3) Cram, D. J.; Trueblood, K. N. Top. Curr. Chem. 1981, 98, 43-106.
 (4) Katz, H. E. J. Org. Chem. 1985, 50, 5027-5032. Beauchamp, A. L.;
 Oliver, M. J.; Wuest, J. D.; Zacharie, B. J. Am. Chem. Soc. 1986, 108, 73-77.

⁽⁵⁾ Lee, M.-T.; Foxman, B. M.; Rosenblum, M. Organometallics 1985, 4, 539-547.

⁽⁶⁾ Rebek, J.; Nemeth, D. J. Am. Chem. Soc. 1986, 108, 5637-5638. (7) Hennion, G. F.; Anderson J. G. J. Am. Chem. Soc. 1946, 68, 424-426.